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ABSTRACT 

The Space S t a t i o n  w i l l  r e p r e s e n t  t h e  first t ime t h a t  a s o l a r  dynamic 

power system w i l l  be used t o  genera te  e l e c t r i c a l  power i n  space. I n  a system 

such as t h i s ,  s u n l i g h t  i s  c o l l e c t e d  and focused by a s o l a r  c o n c e n t r a t o r  onto 

the  r e c e i v e r  o f  a hea t  engine,  which conver t s  the  energy i n t o  e l e c t r i c i t y .  

The c o n c e n t r a t o r  must be capable o f  c o l l e c t i n g  and f o c u s i n g  as much of the  

i n c i d e n t  s u n l i g h t  as p o s s i b l e ,  and i t  must a l s o  w i t h s t a n d  the  a tomic  oxygen 

bombardment which occu rs  i n  l o w - e a r t h - o r b i t  (LEO). Th is  has l e d  t o  t h e  
e 
h 
0 e 

I 
w development o f  a sys tem o f  t h i n  f i l m  c o a t  

f a c e t  su r face  i n  a chamber des igned espec 

of t h i n  f i l m  c o a t i n g s  employed g i ves  bo th  

ngs a p p l i e d  to  the c o n c e n t r a t o r  

a l l y  f o r  t h i s  purpose. The system 

the  necessary degree of r e f l e c t a n c e  

and the  r e q u i r e d  p r o t e c t i o n  from the  LEO atomic oxygen env i ronment .  

INTRODUCTION 

Concept 

Electrical power 

i n tended  to  be accomp 

p h o t o v o l t a i c  ( P V )  c e l  

t he  s t a t i o n ' s  i n i t i a l  

generation on t h e  U.S .  Space S t a t i o n  i s  u l t i m a t e l y  

i shed  by two d i f f e r e n t  systems. T r a d i t i o n a l  s i l i c o n  

s w i l l  p r o y i d e  approx ima te l y  75 kW o f  e l e c t r i c i t y  for 

o p e r a t i n g  c o n f i g u r a t i o n  ( I O C ) .  Subsequent ly ,  two 25  kW 

s o l a r  dynamic power system (SDPS) modules w i l l  be added t o  the  s t a t i o n  

approx ima te l y  2 years  a f t e r  IOC has been achieved.  

A s o l a r  dynamic power system generates e l e c t r i c i t y  by f o c u s i n g  sun1 i g h t  

o n t o  t h e  r e c e i v e r  o f  a h e a t  eng ine ,  such as a c losed  c y c l e  Bray ton  system. 



Focusing of the sunlight into the receiver may be accomplished by either 

reflective or refractive techniques. Such systems have the potential to 

generate electricity with a four-fold increase in efficiency over an 

equivalent PV system on the basis of power-per-unit collector surface area. 

This can result in a significant savings over the life of the station in terms 

of fuel required for periodic reboosts as its orbit decays due to atmospheric 

drag. 

Solar dynamic power modules are comprised of several parts, which include 

the concentrator, receiver, power conversion unit (the heat engine), and 

radiator (Fig. 1 ) .  The designs of each of these has required the development 

of new materials and procedures in order for the system to both meet 

performance requirements and survive in the low-earth-orbit space 

environment. A reflective system, rather than a refractive lens system, has 

been chosen for the initial solar dynamic power module configuration. This 

article is concerned primarily with materials research and selection for the 

concentrator optics. 

The function of the concentrator i s  to collect sunlight and focus it 

through an aperture and onto the receiver of the heat engine. 

which falls outside of the aperture i s  wasted; hence, it is desirable that the 

concentrator surface has a high value of solar specular reflectance. 

specular reflectance i s  defined as the percentage of Incident solar energy 

reflected through an aperture of a given solid angle, which in this case is 

defined by the diameter of the receiving aperture and distance from the 

concentrator to the receiver. 

placed a lower limit on the acceptable value of the solar specular reflectance 

of the concentrator surface. This value has been determined to be 0.88 

Any sunlight 

Solar 

The respective sizes of these components have 
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through an aperture of 7.5 mrad full cone angle (4.4~10-5 steradian solid 

angle). 

There are two principal ways of achieving high solar specular 

reflectance. The first is to make the concentrator surface as smooth as 

possible. This minimizes the degree of scattered or diffusely reflected 

light. 

wavelengths of interest (generally 250 to 2500 nm) as the reflective medium. 

Silver and aluminum each have high reflectances over this range (Fig. 2), with 

silver better at wavelengths where the solar spectrum peaks (-500 nm). The 

integrated solar hemispherical reflectances for these metals (calculated by 

convolution of their respective reflectance spectra in to the air-mass-zero 

solar spectrum) (Ref. 1) are nearly identical, with aluminum a percentage 

point or so higher (93 versus 92 percent). 

In addition to high reflectance, the concentrator must meet a number of 

The second is to use a material with a high reflectance over the solar 

additional requirements. 

transport in the shuttle cargo bay, easily deployed, and durable in the 

natural space environment. Accomplishing this last requirement has required 

the expenditure of  a great deal of time and effort to identify suitable 

materials and techniques. 

It must be low cost, lightweight, easily stowed for 

The Low Earth Orbit Environment 

The region between 200 and 800 km above the earth's surface i s  character- 

ized by a number of factors potentially harmful to spacecraft component'mate- 

rials. The predominant hazard is oxidation by neutral atomic oxygen (Ref 2 )  

which arises from the photodissociation of upper atmosphere molecular oxygen 

(Fig. 3 ) .  This oxygen impacts spacecraft surfaces in the ram direction with 

an energy of about 4 eV, due to the relative velocity o f  the orbiting space- 

craft. Other hazards include ultraviolet radiation (especially at wavelengths 
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below 200 nm), p a r t i c u l a t e  impact  from micrometeoro ids  and space d e b r i s ,  ener-  

g e t i c  charged p a r t i c l e  impact ,  and thermal  c y c l i n g  r e s u l t i n g  f rom repeated  

excurs ions  th rough the  e a r t h ' s  shadow d u r i n g  o r b i t .  A l though  a l l  o f  the  above 

hazards have been and a re  be ing  i n v e s t i g a t e d ,  t h i s  a r t i c l e  w i l l  be concerned 

o n l y  w i t h  the  problem o f  atomic oxygen. 

E a r l y  s h u t t l e  f l i g h t s  e x h i b i t e d  d e g r a d a t l o n  o f  a number o f  spacec ra f t  

component m a t e r i a l s  due t o  o x i d a t i o n  by ram-impact a tomic  oxygen (Refs .  3 t o  

6 ) .  

a f t e r  o n l y  40 h r  o f  exposure ( R e f s .  5 and 6). Th is  deg rada t ion  c o n s i s t e d  o f  

b o t h  mass l o s s  and su r face  t e x t u r i n g ,  w i t h  concomi tan t  changes i n  o p t i c a l  

p r o p e r t i e s .  Most m e t a l l i c  m a t e r i a l s  w e r e  c o n s i d e r a b l y  l e s s  a f fec ted ,  w i t h  

mass l o s s  g e n e r a l l y  too smal l  t o  be measured. S i l v e r  was an i m p o r t a n t  excep- 

t i o n  and was r e a d i l y  o x i d i z e d  i n  LEO. I f  s i l v e r  i s  t o  be used as t h e  concen- 

t r a t o r  r e f l e c t i v e  medium, some form of p r o t e c t i o n ,  p r o b a b l y  i n  the  form o f  a 

t h i n  f i l m  c o a t i n g ,  i s  r e q u i r e d .  

I n  p a r t i c u l a r ,  many o r g a n i c  polymer m a t e r i a l s  were s e v e r e l y  degraded 

Concen t ra to r  M a t e r i a l s  and C o n s t r u c t i o n  

A s  c u r r e n t l y  des igned,  one complete c o n c e n t r a t o r  u n i t  (or module) w i  1 1  

c o n s i s t  o f  456 t r i a n g u l a r  f a c e t s ,  each 1 m on  a s i d e .  These w i l l  be a r ranged 

i n t o  19 hexagonal e lements,  each composed o f  24 f a c e t s .  Each o f  these face ts  

i s  composed o f  0.19 mm ( 7 . 5  m i l )  t h i c k  g raph i te -epoxy  composi te  bonded t o  a 

6 . 4  mm (0.25 i n . )  t h i c k  aluminum honeycomb co re .  The composite i s  f a b r i c a t e d  

by p r e s s i n g  193P/3501-6 p rep reg  g r a p h i t e  c l o t h  i n t o  0.038 mm (1.5 m i l )  t h i c k  
I 

I epoxy r e s i n  (Ref .  7 ) .  This  c o n s t r u c t i o n  g i v e s  the  f a c e t s  r i g i d i t y  w h i l e  main- 
I 

t a i n i n g  l i g h t  we igh t .  Th is  s i z e  of f a c e t  a l l o w s  for b o t h  e f f i c i e n t  packaging 

i n t o  t h e  s h u t t l e  cargo  bay and ease of  h a n d l i n g  and deployment once on o r b i t .  

Coa t ing  o f  these face ts  r e q u i r e s  a d e p o s i t i o n  chamber l a r g e  enough to  c o n t a i n  

the  f a c e t  and a p p l y  the  necessary c o a t i n g s  to  the  r e q u i r e d  th i ckness  
' 
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completely and uniformly, but small enough to allow for rapid turn around 

because of the large number of facets. 

A variety o f  scenarios are possible for the coating system. Silver and 

aluminum have nearly identical solar reflectances (-0.93) which are higher 

than any other metal. Silver is easily oxldized, and would thus require 

protection. Aluminum, however, forms a transparent, passivating oxide which 

would be expected to protect It against further oxidation by LEO atomic oxygen. 

Recent studies, however, have indicated that aluminum is not completely passi- 

vated; it has been observed that the surface continues to oxidize, albeit very 

slowly, in the presence of a simulated LEO atomic oxygen environment (Ref. 8). 

Furthermore, calculations predict that the reflectance of aluminum is reduced 

significantly by dielectric coatings (such as metal oxides) a few hundreds of 

Angstroms thick, especially at angles of incidence other than the normal 

(Ref. 9). Because of these findings, silver remains under prime consideration 

as the reflecting medium. 

Because of the adverse effect of LEO atomic oxygen observed on organic 

polymers, most commercially available silvered films, such as Silverlux (3M), 

are effectively ruled out unless an addltional atomic oxygen protective 

coating i s  applied to the surface. Several thin film dielectric coatings, 

however, have been identified as suitable for protection of silver in an 

oxidizing environment. In general, the protective coating must be transparent 

to the solar wavelengths of interest in order that it not interfere with the 

reflected light. Dielectric materials, such as silicon dioxide, magnesium 

fluoride, and aluminum oxide, have been found to offer adequate protection to  

silver (Refs. 10 and 11). Typical reflectance data for several reflective 

metal/protective coating systems are shown in Fig. 4 .  In addition to environ- 

ment'al and performance suitability, there are a number of other factors to be 
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cons 

c o s t  

dered i n  s e l e c t i n g  a p a r t i c u l a r  s y s t e m  o f  m a t e r i a l s .  Among 

ava i  l a b i  1 i t y ,  ease of d e p o s i t i o n ,  compati b i  1 i ty ,  and durab 

these a re  

1 i t y  from 

damage t h a t  c o u l d  be induced th rough normal h a n d l i n g  and t r a n s p o r t .  

METHODS OF COATING PREPARATION AND C H A R A C T E R I Z A T I O N  

D e p o s i t i o n  Techniques 

A number o f  methods a r e  a v a i l a b l e  to  d e p o s i t  t h e  v a r i o u s  c o a t i n g s  o n t o  

the  f a c e t  su r faces .  

r e l a t i o n  t o  t h i s  a p p l i c a t i o n  a re  ion-beam s p u t t e r i n g  and e lect ron-beam evapo- 

r a t i o n .  The NASA Lewis Research Center  has a l o n g  h i s t o r y  i n  the  s tudy  o f  i o n  

t h r u s t e r s  for spacecra f t  p r o p u l s i o n  and i n  the  a p p l i c a t l o n  of t h i s  techno logy  

t o  a v a r i e t y  o f  d i f f e r e n t  uses ( R e f .  12 ) .  Among these i s  t he  s p u t t e r  depos i -  

t i o n  o f  t a r g e t  m a t e r i a l s  t o  prepare t h i n  f i l m  c o a t i n g s  ( R e f s .  1 3  and 1 4 ) .  A 

major  advantage o f  t h i s  techn ique i s  t h a t ,  i f t h e  s y s t e m  i s  c o n f i g u r e d  

p r o p e r l y ,  t he  s u b s t r a t e  s u r f a c e  can be c leaned i n  s i t u  by i o n  beam s p u t t e r i n g  

p r i o r  t o  d e p o s i t i o n ,  which g r e a t l y  improves f i l m - s u b s t r a t e  adherence. The 

major  drawback to  t h e  techn ique i s  t h a t  i t  i s  g e n e r a l l y  l i m i t e d  to  r e l a -  

t i v e l y  smal l  s u b s t r a t e s  ( a  few inches square) ,  un less  a l a r g e  beam and t a r g e t  

a re  used, or t h e  source and t a r g e t  a r e  r a s t e r e d  o v e r  t h e  sur face o f  t h e  sub- 

s t r a t e .  I t  i s  n o t  c o s t  e f f e c t i v e  t o  b u i l d  a l a r g e  s c a l e  ion-beam d e p o s i t i o n  

system f o r  an a p p l i c a t i o n  such as t h i s  s i n c e  o t h e r  techn iques  a re  a v a i l a b l e  

which can p r o v i d e  t h e  r e q u i r e d  c o a t i n g s  on s u b s t r a t e s  o f  t h i s  s i z e .  

Two techn iques  which have been e x t e n s i v e l y  s t u d i e d  i n  

Evapora t i on  techn iques  a re  a v a i l a b l e  which can p r o v i d e  accep tab le  c o a t i n g s  

over  l a r g e  s u r f a c e  areas .  Electron-beam e v a p o r a t i o n  offers seve ra l  advantages 

i n c l u d i n g  r a p i d  d e p o s i t i o n  r a t e s ,  t h i c k n e s s  u n i f o r m i t y ,  m u l t i p l e  d e p o s i t i o n s  

under a s i n g l e  pumpdown, low c o s t ,  and t h e  a b i l i t y  to  evaporate a wide v a r i e t y  

o f  m a t e r i a l s  ( i n c  ud ing  a l l  t h e  m a t e r i a l s  r e q u i r e d  for  the  c o n c e n t r a t o r  

face ts ) . .  A depos t i o n  chamber, which makes use o f  an e lect ron-beam evapora- 
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to r ,  has been des igned and o u t f i t t e d  ( F i g .  5 )  t o  coa t  t he  f a c e t s  w i t h  the  

r e q u i r e d  c o a t i n g s  t o  ach ieve  the  r e q u i r e d  r e f l e c t a n c e  and atomic oxygen 

du rab i  1 i ty .  

M a t e r i a l s  C o m p a t i b i l i t y  

The p r e p a r a t i o n  o f  a f a c e t ,  

oxygen env i ronment ,  r e q u i r e s  con 

r e q u i r e d  m a t e r i a l s .  The r e f l e c t  

based on s i l v e r  and w i l l  c o n s i s t  

copper a f e w  tens  o f  Angstrom t h  

epoxy s u b s t r a t e .  The purpose o f  

which w i l l  s u c c e s s f u l l y  w i t h s t a n d  an a tomic  

i d e r a t i o n  of the  i n t e r a c t i o n s  of t h e  v a r i o u s  

ve system, as c u r r e n t l y  proposed, w i l l  be 

o f  fou r  l a y e r s  (Ref. 9) ( F i g .  6). A l a y e r  o f  

ck  i s  first d e p o s i t e d  o n t o  the  g r a p h i t e -  

t h e  copper i s  t o  promote the  adhes ion  o f  

s i l v e r  which i s  depos i ted  o n t o  the  copper t o  a t h i c k n e s s  of about  2000 I t .  The 

f i n a l  two l a y e r s ,  p resen t  for t h e  purpose of p r o t e c t i n g  the  s i l v e r ,  a r e  a lum i -  

num o x i d e  (about  300 A )  and s i l i c o n  d i o x i d e  (about  700 A ) .  

There a r e  seve ra l  reasons f o r  t h i s  cho ice  o f  p r o t e c t i v e  l a y e r s .  Aluminum 

o x i d e  adheres w e l l  t o  s i l v e r  and p r o v i d e s  an e f f e c t i v e  b a r r i e r  t o  atomic 

oxygen. I t  i s  n o t ,  however, imperv ious  t o  mo is tu re ,  and s ince  t h e  r e f l e c t i v e  

su r face  w i  1 1  have t o  w i t h s t a n d  ground l e v e l  a tmospher ic  c o n d i t i o n s  p r i o r  t o  

launch,  i t  i s  d e s i r a b l e  to  p l a c e  a second, m o i s t u r e - r e s i s t a n t  b a r r i e r  o v e r  t h e  

A120-3. The a d d i t i o n  of a second l a y e r  a l s o  a c t s  t o  cover  any su r face -de fec t  

induced p i n h o l e s  i n  t h e  f irst l a y e r .  Defects  such as these a re  s i t e s  for 

o x i d a t i o n  o f  t h e  s i l v e r  l a y e r ,  and i t  has been observed t h a t  o x i d a t i v e  damage 

a t  such s i t e s  can spread to  cover  an area  many t imes l a r g e r  than t h a t  o f  the  

p i n h o l e  i t s e l f  (Refs .  15 and 16) .  Th i s  i s  due t o  t h e  f a c t  t h a t  t h e  g r a p h i t e -  

epoxy s u b s t r a t e  i s  h i g h l y  s u s c e p t i b l e  t o  o x i d a t i o n ,  and i t  thus can a l s o  be 

o x i d i z e d  th rough t h e  p i n h o l e  ( F i g .  7). 

I n  summary, t h e  s e r i e s  of fou r  c o a t i n g s  (S i02 ,  Al2O3, Ag, and Cu) a r e  

e a s i l y  a p p l i e d ,  adherent ,  t r a n s p a r e n t ,  i nexpens ive ,  and r e a d i l y  a v a i l a b l e .  
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The combined m u l t i l a y e r  c o a t i n g  i s  hard ,  r e s  

reasonab ly  r e s i s t a n t  t o  damage t h a t  m i g h t  oc 

s t a n t  t o  atom c oxygen, and 

u r  from o r d i n a r y  hand 

t r a n s p o r t  and deployment.  O f  course,  g i v e n  a s u f f i c i e n t l y  energet  

damage s u f f i c i e n t  t o  p i e r c e  t h e  p r o t e c t i v e  c o a t i n g  can o c c u r .  The 

o f  damage due t o  h a n d l i n g  and deployment must be k e p t  to  a minimum 

OTHER CONSIDERATIONS 

r e f l e c t a n c e  and s u r v i v i n g  i n  t h e  low-ear th-orb 

f a c t o r s  to  be cons ide red  i n  t h e  success fu l  dep 

A s  mentioned e a r l i e r ,  o t h e r  hazards e x i s t  such 

mal c y c l i n g ,  and m ic rometeo ro id /deb r i s  impact .  

o f  these 

I t  

p r o t e c t s  

much o f  

i n g  d u r i n g  

c impact ,  

l i k e l i h o o d  

Th is  a r t i c l e  has been p r i m a r i l y  concerned w i t h  t h e  p r e p a r a t i o n  of a s o l a r  

c o n c e n t r a t o r  r e f l e c t i v e  s u r f a c e  capable o f  b o t h  meet ing  t h e  r e q u i r e d  degree of 

t env i ronment .  There a r e  o t h e r  

oyment o f  a s o l a r  c o n c e n t r a t o r .  

as u l t r a v i o l e t  r a d i a t i o n ,  t h e r -  

I n v e s t i g a t i o n  of t h e  d u r a b i l i t y  

mirrors t o  hazards such as these i s  ongoing a t  NASA Lewis.  

s a l s o  i m p o r t a n t  to  r e a l i z e  t h a t  t h i s  p r o t e c t i v e  c o a t i n g  system o n l y  

the  f r o n t  s i d e  of t h e  f a c e t s .  The back s i d e  and edges, as w e l l  as 

he r e s t  of t h e  Space S t a t i o n  s t r u c t u r e ,  w i l l  be f a b r i c a t e d  from 

graph i te -expoxy  composi te  and w i l l  need p r o t e c t i o n  from atomic  oxygen. T h i s  

s u b j e c t  i s  beyond t h e  scope of  t h i s  a r t i c l e ,  b u t  i t  must be remembered t h a t  

t h e  prob lem o f  l o w - e a r t h - o r b i t  d u r a b i l i t y  e x i s t s  for  o t h e r  p a r t s  o f  t h e  con- 

c e n t r a t o r  and Space S t a t i o n  as w e l l .  
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FIGURE 1. - SCHEMATIC DIAGRAM OF A SOLAR DYNAMIC POWER MODULE WHICH FIGURE 2. - REFLECTANCE VERSUS WAVELENGTH FOR SEVERAL METALS 

INCLUDES A CONCENTRATOR MADE UP OF HEXAGONAL ELEMENTS, EACH OF (TOP), AND RELATIVE SOLAR SPECTRAL IRRADIANCE VERSUS WAVE- 
WHICH IS COMPRISED OF SPHERICALLY CONTOURED TRIANGULAR FACETS. 
ALSO SHOWN ARE THE RECEIVEWHEAT ENGINE AND RADIATOR. 
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FIGURE 4. - INTEGRATED SOLAR SPECULAR REFLECTANCE AS A 
FUNCTION OF OXYGEN P L A S M  EXPOSURE T I E  FOR SEVERAL 
REFLECTOR SYSTEMS. 
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FIGURE 5 .  - SCHEMATIC REPRESENTATION OF THE FACET COATING 
CHAMBER. THE FACET IS  ATTACHED TO THE FACET MOUNT. WHICH 
I S  ROTATED WHILE HELD AT A 21' ANGLE BY AN OFFSET. MOTOR- 

SPHERICALLY-CONTOURED SURFACE 

GRAPHITE-EPOXY FACESHEETJ ,l 

METAL REFLECTIVE LAYER' 

I 
METAL OXIDE PROTECTIVE LAYER 

FIGURE 6 .  - SCHEMATIC REPRESENTATION OF THE MULTILAYER SYSTEM WHICH 
COMPRISES THE FACET. I N  THIS PARTICULAR CASE, THE METAL REFLEC- 
TIVE LAYER (SILVER) IS DEPOSITED ONTO A LAYER OF Cu (NOT SHOWN) 

DRIVEN FEEOTHRU MOUNTED I N  THE TOP OF THE CHAMBER. MATERIAL 
IS EVAPORATED AT AN ELECTRON-BEAM SOURCE LOCATED I N  THE 
BOTTOM OF THE CHAMBER AT ONE SIDE. 

THE METAL OXIDE PROTECTIVE LAYER CONSISTS OF A LAYER OF A ~ 2 0 3  
FOLLOWED BY A LAYER OF S102. ' I  
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FIGURE 7. - SCANNING ELECTRON MICROGRAPH OF A MIRROR SURFACE 
WITH PINHOLE DEFECTS AFTER 2 4 0  HOURS OF OXYGEN PLASMA EXP!SURE. 
THE MIRROR CONSISTED !F: GRAPHITE-EPOXY SUBSTRATE/AG(~OOOA)/ 
Ac203(7M)h /S~02(2200A) .  THE DARK PATCHES ARE OXIDATIVE 
UNDERCUTTING THROUGH THE DEFECT SITES (SMALL HOLE ROUGHLY I N  
THE CENTER OF EACH PATCH). 
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